The method of fundamental solution for elastic wave scattering and dynamic stress concentration in a fluid-saturated poroelastic layered half-plane
- Publication Type:
- Journal Article
- Citation:
- Engineering Analysis with Boundary Elements, 2017, 84 pp. 154 - 167
- Issue Date:
- 2017-11-01
Closed Access
Filename | Description | Size | |||
---|---|---|---|---|---|
1-s2.0-S0955799717301157-main.pdf | Published Version | 3.64 MB |
Copyright Clearance Process
- Recently Added
- In Progress
- Closed Access
This item is closed access and not available.
© 2017 Elsevier Ltd A meshless method based on the method of fundamental solution (MFS) is developed to solve elastic-wave scattering and dynamic stress concentration in a fluid-saturated poroelastic layered half-plane, by utilizing the line sources of cylindrical PI, PII, and SV waves in a poroelastic layered half-plane. The numerical accuracy and stability of the MFS is verified by examining the boundary conditions and comparison with other methods. Subsequently, the amplification effects on displacement, surface hoop stress and fluid pore pressure around a cavity in a three-layered poroelastic half-plane are investigated. Numerical results indicate that the scattering characteristics strongly depend on parameters including the incident frequency and angle, soil-layer porosity and boundary drainage condition. The amplification effects of a cavity in the poroelastic layered half-plane appear to be more significant than the corresponding case of a homogenous half-plane. The amplitude of the fluid pore pressure on the surface of the cavity is amplified up to five times that of the free field, which also considerably aggravates the dynamic stress concentration around the cavity.
Please use this identifier to cite or link to this item: