Writer identification by training on one script but testing on another

Publication Type:
Conference Proceeding
Citation:
Proceedings - International Conference on Pattern Recognition, 2017, pp. 1153 - 1158
Issue Date:
2017-04-13
Full metadata record
Files in This Item:
Filename Description Size
ICPR_CRC.pdfAccepted Manuscript1.95 MB
Adobe PDF
© 2016 IEEE. This paper deals with identifying a writer from his/her offline handwriting. In a multilingual country where a writer can scribe in multiple scripts, writer identification becomes challenging when we have individual handwriting data in one script while we need to verify/identify a writer from handwriting in another script. In this paper such an issue is addressed with two scripts: English and Bengali. Here we model the task as a classification problem, where training data contains only Bengali handwritten samples and testing is performed on English handwritten texts. This work is based on the understanding that a writer has some inherent stroke characteristics that are independent of the script in which (s)he writes. In this work, some implicit structural and statistical features are extracted, and multiple classifiers are employed for writer identification. Many training sessions are run on a database of 100 writers and the performances are analyzed. We have obtained encouraging results on this database, which show the effectiveness of our method.
Please use this identifier to cite or link to this item: