Text stream to temporal network - A dynamic heartbeat graph to detect emerging events on twitter

Publication Type:
Conference Proceeding
Citation:
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2018, 10938 LNAI pp. 534 - 545
Issue Date:
2018-01-01
Full metadata record
Files in This Item:
Filename Description Size
PAKDD18-Zafar.pdfAccepted Manuscript version1.6 MB
Adobe PDF
© 2018, Springer International Publishing AG, part of Springer Nature. Huge mounds of data are generated every second on the Internet. People around the globe publish and share information related to real-world events they experience every day. This provides a valuable opportunity to analyze the content of this information to detect real-world happenings, however, it is quite challenging task. In this work, we propose a novel graph-based approach named the Dynamic Heartbeat Graph (DHG) that not only detects the events at an early stage, but also suppresses them in the upcoming adjacent data stream in order to highlight new emerging events. This characteristic makes the proposed method interesting and efficient in finding emerging events and related topics. The experiment results on real-world datasets (i.e. FA Cup Final and Super Tuesday 2012) show a considerable improvement in most cases, while time complexity remains very attractive.
Please use this identifier to cite or link to this item: