Classification and representation joint learning via deep networks

Publication Type:
Conference Proceeding
Citation:
IJCAI International Joint Conference on Artificial Intelligence, 2017, pp. 2215 - 2221
Issue Date:
2017-01-01
Full metadata record
Files in This Item:
Filename Description Size
0308.pdfPublished version1.45 MB
Adobe PDF
Deep learning has been proven to be effective for classification problems. However, the majority of previous works trained classifiers by considering only class label information and ignoring the local information from the spatial distribution of training samples. In this paper, we propose a deep learning framework that considers both class label information and local spatial distribution information between training samples. A two-channel network with shared weights is used to measure the local distribution. The classification performance can be improved with more detailed information provided by the local distribution, particularly when the training samples are insufficient. Additionally, the class label information can help to learn better feature representations compared with other feature learning methods that use only local distribution information between samples. The local distribution constraint between sample pairs can also be viewed as a regularization of the network, which can efficiently prevent the overfitting problem. Extensive experiments are conducted on several benchmark image classification datasets, and the results demonstrate the effectiveness of our proposed method.
Please use this identifier to cite or link to this item: