A wireless steady state visually evoked potential-based BCI eating assistive system

Publication Type:
Conference Proceeding
Citation:
Proceedings of the International Joint Conference on Neural Networks, 2017, 2017-May pp. 3003 - 3007
Issue Date:
2017-06-30
Metrics:
Full metadata record
Files in This Item:
Filename Description Size
PID4667991.pdfAccepted Manuscript486.75 kB
Adobe PDF
© 2017 IEEE. Brain-Computer interface (BCI) which aims at enabling users to perform tasks through their brain waves has been a feasible and worth developing solution for growing demand of healthcare. Current proposed BCI systems are often with lower applicability and do not provide much help for reducing burdens of users because of the time-consuming preparation required by adopted wet sensors and the shortage of provided interactive functions. Here, by integrating a state visually evoked potential (SSVEP)-based BCI system and a robotic eating assistive system, we propose a non-invasive wireless steady state visually evoked potential (SSVEP)-based BCI eating assistive system that enables users with physical disabilities to have meals independently. The analysis compared different methods of classification and indicated the best method. The applicability of the integrated eating assistive system was tested by an Amyotrophic Lateral Sclerosis (ALS) patient, and a questionnaire reply and some suggestion are provided. Fifteen healthy subjects engaged the experiment, and an average accuracy of 91.35%, and information transfer rate (ITR) of 20.69 bit per min are achieved. For online performance evaluation, the ALS patient gave basic affirmation and provided suggestions for further improvement. In summary, we proposed a usable SSVEP-based BCI system enabling users to have meals independently. With additional adjustment of movement design of the robotic arm and classification algorithm, the system may offer users with physical disabilities a new way to take care of themselves.
Please use this identifier to cite or link to this item: