Automatic Chinese Factual Question Generation

Publication Type:
Journal Article
Citation:
IEEE Transactions on Learning Technologies, 2017, 10 (2), pp. 194 - 204
Issue Date:
2017-04-01
Metrics:
Full metadata record
Files in This Item:
Filename Description Size
07467571.pdfPublished Version1.35 MB
Adobe PDF
© 2017 IEEE. Question generation is an emerging research area of artificial intelligence in education. Question authoring tools are important in educational technologies, e.g., intelligent tutoring systems, as well as in dialogue systems. Approaches to generate factual questions, i.e., questions that have concrete answers, mainly make use of the syntactical and semantic information in a declarative sentence, which is then transformed into questions. Recently, some research has been conducted to investigate Chinese factual question generation with some limited success. Reported performance is poor due to unavoidable errors (e.g., sentence parsing, name entity recognition, and rule-based question transformation errors) and the complexity of long Chinese sentences. This article introduces a novel Chinese question generation system based on three stages, sentence simplification, question generation and ranking, to address the challenge of automatically generating factual questions in Chinese. The proposed approach and system have been evaluated on sentences from the New Practical Chinese Reader corpus. Experimental results show that ranking improves more than 20 percentage of questions rated as acceptable by annotators, from 65 percent of all questions to 87 percent of the top ranked 25 percent questions.
Please use this identifier to cite or link to this item: