Most influential community search over large social networks

Publication Type:
Conference Proceeding
Citation:
Proceedings - International Conference on Data Engineering, 2017, pp. 871 - 882
Issue Date:
2017-05-16
Metrics:
Full metadata record
Files in This Item:
Filename Description Size
Most influential community search over large social networks.pdfPublished version1.16 MB
Adobe PDF
© 2017 IEEE. Detecting social communities in large social networks provides an effective way to analyze the social media users' behaviors and activities. It has drawn extensive attention from both academia and industry. One essential aspect of communities in social networks is outer influence which is the capability to spread internal information of communities to external users. Detecting the communities of high outer influence has particular interest in a wide range of applications, e.g., Ads trending analytics, social opinion mining and news propagation pattern discovery. However, the existing detection techniques largely ignore the outer influence of the communities. To fill the gap, this work investigates the Most Influential Community Search problem to disclose the communities with the highest outer influences. We firstly propose a new community model, maximal kr-Clique community, which has desirable properties, i.e., society, cohesiveness, connectivity, and maximum. Then, we design a novel tree-based index structure, denoted as C-Tree, to maintain the offline computed r-cliques. To efficiently search the most influential communities, we also develop four advanced index-based algorithms which improve the search performance of non-indexed solution by about 200 times. The efficiency and effectiveness of our solution have been extensively verified using six real datasets and a small case study.
Please use this identifier to cite or link to this item: