Fractional discriminative multiview correlation projection for face feature fusion

Publication Type:
Conference Proceeding
Citation:
20th International Conference on Information Fusion, Fusion 2017 - Proceedings, 2017
Issue Date:
2017-08-11
Full metadata record
Files in This Item:
Filename Description Size
08009815.pdfPublished version401.46 kB
Adobe PDF
© 2017 International Society of Information Fusion (ISIF). Multiple view data with different feature representations have widely arisen in various practical applications. Due to the information diversity, fusing multiview features is very valuable for classification purpose. In this paper, we propose a new multifeature fusion method called fractional-order discriminative multiview correlation projection (FDMCP), which is based on fractional-order scatter matrices with class label information of the samples. FDMCP first defines supervised covariance matrices in each view. It then constructs fractional supervised scatter matrices. Experimental results on three benchmark face image datasets show that our proposed FDMCP approach outperforms generalized multiview linear discriminant analysis.
Please use this identifier to cite or link to this item: