Keyphrase extraction using knowledge graphs

Publication Type:
Conference Proceeding
Citation:
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2017, 10366 LNCS pp. 132 - 148
Issue Date:
2017-01-01
Metrics:
Full metadata record
Files in This Item:
Filename Description Size
Keyphrase Extraction Using Knowledge Graphs.pdfPublished version1.48 MB
Adobe PDF
© Springer International Publishing AG 2017. Extracting keyphrases from documents automatically is an important and interesting task since keyphrases provide a quick summarization for documents. Although lots of efforts have been made on keyphrase extraction, most of the existing methods (the co-occurrence based methods and the statistic-based methods) do not take semantics into full consideration. The co-occurrence based methods heavily depend on the co-occurrence relations between two words in the input document, which may ignore many semantic relations. The statistic-based methods exploit the external text corpus to enrich the document, which introduces more unrelated relations inevitably. In this paper, we propose a novel approach to extract keyphrases using knowledge graphs, based on which we could detect the latent relations of two keyterms (i.e., noun words and named entities) without introducing many noises. Extensive experiments over real data show that our method outperforms the state-of-art methods including the graph-based co-occurrence methods and statistic-based clustering methods.
Please use this identifier to cite or link to this item: