Block-based feature extraction model for early fire detection

Publication Type:
Conference Proceeding
2017 IEEE Symposium Series on Computational Intelligence, SSCI 2017 - Proceedings, 2018, 2018-January pp. 1 - 6
Issue Date:
Filename Description Size
08280933.pdfPublished version539.25 kB
Adobe PDF
Full metadata record
© 2017 IEEE. Every year the fire disaster always causes a lot of casualties and property damage. Many researchers are involved in the study of related disaster prevention. Early warning systems and stable fire can significantly reduce the damage caused by fire. Many existing image-based early warning systems can perform well in a particular field. In this paper, we propose a general framework that can be applied in most realistic environments. The proposed system is based on a block-based feature extraction method, which analyses local information in separate regions leading to a reduction in computing data. Local features of fire block are extracted from the detailed characteristics of fire objects, which include fire color, fire source immobility, and disorder. Each local feature has high detection rate and filter out different false-positive cases. Global analysis with fire texture and non-moving properties are applied to further reduce false alarm rate. The proposed system is composed of algorithms with low computation. Through a series of experiments, it can be observed that Experimental results show that the proposed system has higher detection rate and low false alarm rate under various environment.
Please use this identifier to cite or link to this item: