Joint fractional time allocation and beamforming for downlink multiuser MISO systems

Publication Type:
Journal Article
Citation:
IEEE Communications Letters, 2017, 21 (12), pp. 2650 - 2653
Issue Date:
2017-12-01
Metrics:
Full metadata record
Files in This Item:
Filename Description Size
1706.01771v2.pdfAccepted manuscript234.79 kB
Adobe PDF
© 2017 IEEE. It is well known that the use of traditional transmit beamforming at a base station (BS) to manage interference in serving multiple users is effective only when the number of users is less than the number of transmit antennas at the BS. Nonorthogonal multiple access (NOMA) can improve the throughput of users with poorer channel conditions by compromising their own privacy, because other users with better channel conditions can decode the information of users with poorer channel conditions. NOMA still prefers that the number of users is less than the number of antennas at the BS transmitter. This letter resolves such issues by allocating separate fractional time slots for serving users with similar channel conditions. This enables the BS to serve more users within a time unit while the privacy of each user is preserved. The fractional times and beamforming vectors are jointly optimized to maximize the system's throughput. An efficient path-following algorithm, which invokes a simple convex quadratic program at each iteration, is proposed for the solution of this challenging optimization problem. Numerical results confirm its versatility.
Please use this identifier to cite or link to this item: