A Framework of Transferring Structures Across Large-scale Information Networks

Publication Type:
Conference Proceeding
Citation:
Proceedings of the International Joint Conference on Neural Networks, 2018, 2018-July
Issue Date:
2018-10-10
Metrics:
Full metadata record
Files in This Item:
Filename Description Size
OCC-128002_AM.pdfAccepted Manuscript version723.84 kB
Adobe PDF
© 2018 IEEE. The existing domain-specific methods for mining information networks in machine learning aims to represent the nodes of an information network into a vector format. However, the real-world large-scale information network cannot make well network representations by one network. When the information of the network structure transferred from one network to another network, the performance of network representation might decrease sharply. To achieve these ends, we propose a novel framework to transfer useful information across relational large-scale information networks (FTLSIN). The framework consists of a 2-layer random walks to measure the relations between two networks and predict links across them. Experiments on real-world datasets demonstrate the effectiveness of the proposed model.
Please use this identifier to cite or link to this item: