Tomographic Characterization of a Multifunctional Composite High-Impedance Surface

Publication Type:
Journal Article
Citation:
IEEE Transactions on Microwave Theory and Techniques, 2018, 66 (6), pp. 2904 - 2913
Issue Date:
2018-06-01
Filename Description Size
Tomography_for_Sympletic.pdfAccepted manuscript6.6 MB
Adobe PDF
Full metadata record
© 1963-2012 IEEE. The performance of a multifunctional composite high-impedance surface (HIS) has been evaluated using the coherent Doppler tomography (CDT) and finite-impulse response (FIR) filtering techniques. A combination of embroidery and advanced laser manufacturing processes were used to fabricate the conformable multifunctional glass fiber reenforced polymer HIS. The CDT method was utilized because it enabled the generation of a high-resolution tomographic map of the HIS reflectivity. Tomograms generated at high incidence angles (>80° from normal) were used to localize and FIR filter unwanted scattering associated with the ground plane edges and HIS transition regions. The resulting scattered fields from a defect (metallic block positioned in the center of the tomogram) were then used to gain a significantly distinctive insight into the HIS scattering properties. Furthermore, unlike traditional methods for characterizing HISs, the CDT and FIR methods presented herein are applicable to electrically large and conformal HISs.
Please use this identifier to cite or link to this item: