Algae building technology energy efficient retrofit potential in Sydney housing

Publication Type:
Conference Proceeding
Citation:
Smart Innovation, Systems and Technologies, 2019, 131 pp. 311 - 321
Issue Date:
2019-01-01
Filename Description Size
_462784_1_En_31_Chapter_Author-1.pdfAccepted Manuscript version1.88 MB
Adobe PDF
Full metadata record
© Springer Nature Switzerland AG 2019. As we explore ways to mitigate the impact of the United Nations Panel on Climate Change conclusion of a three degree increase in global temperature by 2100, one option for the housing sector could be retrofit with innovative technologies to reduce energy use and provide onsite energy generation. We have become familiar with concepts of Passive Haus design and high thermal mass as design technologies to reduce energy demand for heating and cooling. There have been increases in standards in energy efficiency within building codes globally since the 1980s. We are familiar with on-site energy generation technologies such as wind turbines and solar panels. However overall energy consumption increases and reliance on new build innovation and improvement will not deliver sufficient reductions to make an impact. Retrofit is needed, as 87% of the stock we will have by 2050 is already here. To date, there is an innovative evolving technology that has not been considered, trialled or adopted; that may present another contribution to reducing residential energy use and environmental footprint over the building lifecycle. This technology is Algae Building Technology, which comprises biomass production on site in glazed façade panels which also provide solar thermal energy for hot water and heating. Biomass can be converted to biofuel to supply HVAC equipment. In addition to the high value uses of algae as a food source, and a feed stock for pharmaceutical, neutriceutical, agricultural and industry, it can also generate low-grade heat as an useful byproduct. To date, one residential building of 15 apartments in Hamburg has adopted the technology. This paper explores whether the technology could be suited to Sydney Australia and the feasibility for retrofit in low, medium and high density residential stock.
Please use this identifier to cite or link to this item: