Uncovering discriminative knowledge-guided medical concepts for classifying coronary artery disease notes

Publication Type:
Conference Proceeding
Citation:
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2018, 11320 LNAI pp. 104 - 110
Issue Date:
2018-01-01
Metrics:
Full metadata record
Files in This Item:
© Springer Nature Switzerland AG 2018. Text classification is a challenging task for allocating each document to the correct predefined class. Most of the time, there are irrelevant features which make noise in the learning step and reduce the precision of prediction. Hence, more efficient methods are needed to select or extract meaningful features to avoid noise and overfitting. In this work, an ontology-guided method utilizing the taxonomical structure of the Unified Medical Language System (UMLS) is proposed. This method extracts concepts of appeared phrases in the documents which relate to diseases or symptoms as features. The efficiency of this method is evaluated on the 2010 Informatics for Integrating Biology and the Bedside (i2b2) data set. The obtained experimental results show significant improvement by the proposed ontology-based method on the accuracy of classification.
Please use this identifier to cite or link to this item: