Surface runoff prediction regarding LULC and climate dynamics using coupled LTM, optimized ARIMA, and GIS-based SCS-CN models in tropical region

Publication Type:
Journal Article
Arabian Journal of Geosciences, 2018, 11 (3)
Issue Date:
Filename Description Size
Rizeei2018_Article_SurfaceRunoffPredictionRegardi.pdfPublished Version2.55 MB
Adobe PDF
Full metadata record
© 2018, Saudi Society for Geosciences. The effects of climate and land use/land cover (LULC) dynamics have directly affected the surface runoff and flooding events. Hence, current study proposes a full-packaged model to monitor the changes in surface runoff in addition to forecast of the future surface runoff based on LULC and precipitation variations. On one hand, six different LULC classes were extracted from Spot-5 satellite image. Conjointly, land transformation model (LTM) was used to detect the LULC pixel changes from 2000 to 2010 as well as predict the 2020 ones. On the other hand, the time series-autoregressive integrated moving average (ARIMA) model was applied to forecast the amount of rainfall in 2020. The ARIMA parameters were calibrated and fitted by latest Taguchi method. To simulate the maximum probable surface runoff, distributed soil conservation service-curve number (SCS-CN) model was applied. The comparison results showed that firstly, deforestation and urbanization have been occurred upon the given time, and they are anticipated to increase as well. Secondly, the amount of rainfall has non-stationary declined since 2000 till 2015 and this trend is estimated to continue by 2020. Thirdly, due to damaging changes in LULC, the surface runoff has been also increased till 2010 and it is forecasted to gradually exceed by 2020. Generally, model calibrations and accuracy assessments have been indicated, using distributed-GIS-based SCS-CN model in combination with the LTM and ARIMA models are an efficient and reliable approach for detecting, monitoring, and forecasting surface runoff.
Please use this identifier to cite or link to this item: