CciMST: A Clustering Algorithm Based on Minimum Spanning Tree and Cluster Centers

Publication Type:
Journal Article
Mathematical Problems in Engineering, 2018, 2018
Issue Date:
Full metadata record
© 2018 Xiaobo Lv et al. The minimum spanning tree-(MST-) based clustering method can identify clusters of arbitrary shape by removing inconsistent edges. The definition of the inconsistent edges is a major issue that has to be addressed in all MST-based clustering algorithms. In this paper, we propose a novel MST-based clustering algorithm through the cluster center initialization algorithm, called cciMST. First, in order to capture the intrinsic structure of the data sets, we propose the cluster center initialization algorithm based on geodesic distance and dual densities of the points. Second, we propose and demonstrate that the inconsistent edge is located on the shortest path between the cluster centers, so we can find the inconsistent edge with the length of the edges as well as the densities of their endpoints on the shortest path. Correspondingly, we obtain two groups of clustering results. Third, we propose a novel intercluster separation by computing the distance between the points at the intersection of clusters. Furthermore, we propose a new internal clustering validation measure to select the best clustering result. The experimental results on the synthetic data sets, real data sets, and image data sets demonstrate the good performance of the proposed MST-based method.
Please use this identifier to cite or link to this item: