Understanding the mechanisms of how poly aluminium chloride inhibits short-chain fatty acids production from anaerobic fermentation of waste activated sludge

Publication Type:
Journal Article
Chemical Engineering Journal, 2018, 334 pp. 1351 - 1360
Issue Date:
Filename Description Size
1-s2.0-S1385894717319769-main.pdfPublished Version957.93 kB
Adobe PDF
Full metadata record
© 2017 Elsevier B.V. Poly aluminum chloride (PAC) is accumulated in waste activated sludge at high levels. However, details of how PAC affects short-chain fatty acids (SCFA) production from anaerobic sludge fermentation has not been documented. This work therefore aims to fill this knowledge gap by analyzing the impact of PAC on the aggregate of sludge flocs, disruption of extracellular polymeric substances (EPS), and the bio-processes of hydrolysis, acidogenesis, and methanogenesis. The relationship between SCFA production and different aluminum species (i.e., Ala, Alb, and Alc) was also identified by controlling different OH/Al ratio and pH in different fermentation systems. Experimental results showed that with the increase of PAC addition from 0 to 40 mg Al per gram of total suspended solids, SCFA yield decreased from 212.2 to 138.4 mg COD/g volatile suspended solids. Mechanism exploration revealed that PAC benefited the aggregates of sludge flocs and caused more loosely- and tightly-bound extracellular polymeric substances remained in sludge cells. Besides, it was found that the hydrolysis, acidiogenesis, and methanogenesis processes were all inhibited by PAC. Although three types of Al species, i.e., Ala (Al monomers, dimer, and trimer), Alb (Al13(AlO4Al12(OH)24(H2O)7 + 12), and Alc (Al polymer molecular weight normally larger than 3000 Da), were co-existed in fermentation systems, their impacts on SCFA production were different. No correlation was found between SCFA and Ala, whereas SCFA production decreased with the contents of Alb and Alc. Compared with Alb, Alc was the major contributor to the decreased SCFA production (R2 = 0.5132 vs R2 = 0.98). This is the first report revealing the underlying mechanism of how PAC affects SCFA production and identifying the contribution of different Al species to SCFA inhibition.
Please use this identifier to cite or link to this item: