Mechanical properties of cement-based materials and effect of elevated temperature on three-dimensional (3-D) printed mortar specimens in inkjet 3-D printing

Publication Type:
Journal Article
Citation:
ACI Materials Journal, 2019, 116 (2), pp. 55 - 67
Issue Date:
2019-03-01
Filename Description Size
18-183.pdfPublished Version3.68 MB
Adobe PDF
Full metadata record
Copyright © 2019, American Concrete Institute. All rights reserved. Three-dimensional (3-D) printers have the potential to print samples that can be used as a scaffold for a variety of applications in different industries. In this paper, cement-based materials including ordinary portland cement, calcium aluminate cement (passing 150 µm [0.0059 in.] size sieve), and fine sand were investigated as the cement-based materials in inkjet 3-D printing. Prism specimens were printed for the three-point bending test; and cubic specimens were printed for the uniaxial compressive strength test. Prism samples were printed along different directional axes (X, Y, and Z). The tests were conducted at different saturation levels (water-cement ratio [w/c]) as represented by S100C200, S125C250, S150C300, and S170C340. The prism specimens were cured in water for 7 and 28 days while cubic specimens were cured in Ca(OH) 2 and water for 7 and 28 days at the same ambient temperatures. In general, the results changed according to the directional axes of the prisms. However, following water curing, the cubic samples were heated up to 40°C (104°F) in an oven and a higher compressive strength was evident compared to the samples which were only cured in the room-temperature water. The wettability test for both powders has been conducted in the presented study.
Please use this identifier to cite or link to this item: