Heterogeneous information network embedding based personalized query-focused astronomy reference paper recommendation
- Publication Type:
- Journal Article
- Citation:
- International Journal of Computational Intelligence Systems, 2018, 11 (1), pp. 591 - 599
- Issue Date:
- 2018-01-01
Open Access
Copyright Clearance Process
- Recently Added
- In Progress
- Open Access
This item is open access.
© 2018, the Authors. Fast-growing scientific papers bring the problem of rapidly and accurately finding a list of reference papers for a given manuscript. Reference paper recommendation is an essential technology to overcome this obstacle. In this paper, we study the problem of personalized query-focused astronomy reference paper recommendation and propose a heterogeneous information network embedding based recommendation approach. In particular, we deem query researchers, query text, papers and authors of the papers as vertices and construct a heterogeneous information network based on these vertices. Then we propose a heterogeneous information network embedding (HINE) approach, which simultaneously captures intra-relationships among homogeneous vertices, inter-relationships among heterogeneous vertices and correlations between vertices and text contents, to model different types of vertices as vector formats in a unified vector space. The relevance of the query, the papers and the authors of the papers are then measured by the distributed representations. Finally, the papers which have high relevance scores are presented to the researcher as recommendation list. The effectiveness of the proposed HINE based recommendation approach is demonstrated by the recommendation evaluation conducted on the IOP astronomy journal database.
Please use this identifier to cite or link to this item: