Single-inductor, multiple-input-single-output converter based energy mixer for power packet distribution system

Publication Type:
Journal Article
Journal of Power Electronics, 2018, 18 (5), pp. 1479 - 1488
Issue Date:
Full metadata record
© 2018 KIPE. Power packet (PP) distribution system distributes power to different loads that share the same distribution cable in a packetized form. When compared with conventional power systems, a PP distribution system (PPDS) can reduce standby power, eliminate Point-of-Load (PoL) power conversion, and intelligently control the load demand from the source side. Due to the absence of PoL conversion, when multiple power sources at different voltage levels and conditioning requirements jointly send power to various loads at different voltage ratings, the generated voltage has an irregular shape. A large filter at each of the load sides is required to reduce such a large voltage ripple. In this paper, a single-inductor, multiple-input-single-output converter structure based multiple-energy-source mixer is proposed. It combines PP generation, maximum power point tracking (MPPT) of renewable energy sources (RESs) and filtering at the source side. To demonstrate the possible renewable energy integration, a PV panel is used as a power source together with other constant voltage sources. The PV power is approximately tracked using the constant voltage method and it is used for each of the PP generations. The proposed PP distribution system is experimentally verified and it is shown that a conventional PI controller is sufficient for stable system operation.
Please use this identifier to cite or link to this item: