Driver drowsiness detection using multi-channel second order blind identifications

Publication Type:
Journal Article
IEEE Access, 2019, 7 pp. 11829 - 11843
Issue Date:
Filename Description Size
ZhengAccess19.pdfPublished Version2.46 MB
Adobe PDF
Full metadata record
© 2019 IEEE. It is well known that blink, yawn, and heart rate changes give clue about a human's mental state, such as drowsiness and fatigue. In this paper, image sequences, as the raw data, are captured from smart phones which serve as non-contact optical sensors. Video streams containing subject's facial region are analyzed to identify the physiological sources that are mixed in each image. We then propose a method to extract blood volume pulse and eye blink and yawn signals as multiple independent sources simultaneously by multi-channel second-order blind identification (SOBI) without any other sophisticated processing, such as eye and mouth localizations. An overall decision is made by analyzing the separated source signals in parallel to determine the driver's driving state. The robustness of the proposed method is tested under various illumination contexts and a variety of head motion modes. Experiments on 15 subjects show that the multi-channel SOBI presents a promising framework to accurately detect drowsiness by merging multi-physiological information in a less complex way.
Please use this identifier to cite or link to this item: