Stackelberg game for distributed time scheduling in RF-powered backscatter cognitive radio networks

Publication Type:
Journal Article
IEEE Transactions on Wireless Communications, 2018, 17 (8), pp. 5606 - 5622
Issue Date:
Filename Description Size
Stackelberg Game.pdfAccepted Manuscript2.35 MB
Adobe PDF
Full metadata record
© 2002-2012 IEEE. In this paper, we study the transmission strategy adaptation problem in an RF-powered cognitive radio network, in which hybrid secondary users are able to switch between the harvest-then-transmit mode and the ambient backscatter mode for their communication with the secondary gateway. In the network, a monetary incentive is introduced for managing the interference caused by the secondary transmission with imperfect channel sensing. The sensing-pricing-transmitting process of the secondary gateway and the transmitters is modeled as a single-leader-multi-follower Stackelberg game. Furthermore, the follower sub-game among the secondary transmitters is modeled as a generalized Nash equilibrium problem with shared constraints. Based on our theoretical discoveries regarding the properties of equilibria in the follower sub-game and the Stackelberg game, we propose a distributed, iterative strategy searching scheme that guarantees the convergence to the Stackelberg equilibrium. The numerical simulations show that the proposed hybrid transmission scheme always outperforms the schemes with fixed transmission modes. Furthermore, the simulations reveal that the adopted hybrid scheme is able to achieve a higher throughput than the sum of the throughput obtained from the schemes with fixed transmission modes.
Please use this identifier to cite or link to this item: