Evaluating air quality by combining stationary, smart mobile pollution monitoring and data-driven modelling

Publication Type:
Journal Article
Citation:
Journal of Cleaner Production, 2019, 221 pp. 398 - 418
Issue Date:
2019-06-01
Filename Description Size
JCLP_Revised_only_black_text.pdfAccepted manuscript2.18 MB
Adobe PDF
Full metadata record
© 2019 Elsevier Ltd Air pollution impact assessment is a major objective for various community councils in large cities, which have lately redirected their attention towards using more low-cost sensing units supported by citizen involvement. However, there is a lack of research studies investigating real-time mobile air-quality measurement through smart sensing units and even more of any data-driven modelling techniques that could be deployed to predict air quality accurately from the generated data-sets. This paper addresses these challenges by: a) proposing a comparative and detailed investigation of various air quality monitoring devices (both fixed and mobile), tested through field measurements and citizen sensing in an eco-neighbourhood from Lorraine, France, and by b) proposing a machine learning approach to evaluate the accuracy and potential of such mobile generated data for air quality prediction. The air quality evaluation consists of three experimenting protocols: a) first, we installed fixed passive tubes for monitoring the nitrogen dioxide concentrations placed in strategic locations highly affected by traffic circulation in an eco-neighbourhood, b) second, we monitored the nitrogen dioxide registered by citizens using smart and mobile pollution units carried at breathing level; results revealed that mobile-captured concentrations were 3–5 times higher than the ones registered by passive-static monitoring tubes and c) third, we compared different mobile pollution stations working simultaneously, which revealed noticeable differences in terms of result variability and sensitivity. Finally, we applied a machine learning modelling by using decision trees and neural networks on the mobile-generated data and show that humidity and noise are the most important factors influencing the prediction of nitrogen dioxide concentrations of mobile stations.
Please use this identifier to cite or link to this item: