Modeling popularity in asynchronous social media streams with recurrent neural networks

Publication Type:
Conference Proceeding
12th International AAAI Conference on Web and Social Media, ICWSM 2018, 2018, pp. 201 - 210
Issue Date:
Filename Description Size
17888-77918-1-PB.pdfPublished version911.76 kB
Adobe PDF
Full metadata record
Copyright © 2018, Association for the Advancement of Artificial Intelligence ( All rights reserved. Understanding and predicting the popularity of online items is an important open problem in social media analysis. Considerable progress has been made recently in data-driven predictions, and in linking popularity to external promotions. However, the existing methods typically focus on a single source of external influence, whereas for many types of online content such as YouTube videos or news articles, attention is driven by multiple heterogeneous sources simultaneously - e.g. microblogs or traditional media coverage. Here, we propose RNN-MAS, a recurrent neural network for modeling asynchronous streams. It is a sequence generator that connects multiple streams of different granularity via joint inference. We show RNN-MAS not only outperforms the current state-of-the-art Youtube popularity prediction system by 17%, but also captures complex dynamics, such as seasonal trends of unseen influence. We define two new metrics: the promotion score quantifies the gain in popularity from one unit of promotion for a Youtube video; the loudness level captures the effects of a particular user tweeting about the video. We use the loudness level to compare the effects of a video being promoted by a single highly-followed user (in the top 1% most followed users) against being promoted by a group of mid-followed users. We find that results depend on the type of content being promoted: superusers are more successful in promoting Howto and Gaming videos, whereas the cohort of regular users are more influential for Activism videos. This work provides more accurate and explainable popularity predictions, as well as computational tools for content producers and marketers to allocate resources for promotion campaigns.
Please use this identifier to cite or link to this item: