Build emotion lexicon from microblogs by combining effects of seed words and emoticons in a heterogeneous graph

Publication Type:
Social Media Content Analysis: Natural Language Processing and Beyond, 2017, pp. 171 - 195
Issue Date:
Filename Description Size
DocumentOpener (1).pdfPublished version31.37 MB
Adobe PDF
Full metadata record
© 2018 by World Scientific Publishing Co. Pte. Ltd. All rights reserved. As an indispensable resource for emotion analysis, emotion lexicons have attracted increasing attention in recent years. Most existing methods focus on capturing the single emotional effect of words rather than the emotion distributions which are helpful to model multiple complex emotions in a subjective text. Meanwhile, automatic lexicon building methods are overly dependent on seed words but neglect the effect of emoticons which are natural graphical labels of fine-grained emotion. In this chapter, we describe a novel emotion lexicon building framework that leverages both seed words and emoticons simultaneously to capture emotion distributions of candidate words more accurately. Our method overcomes the weakness of existing methods by combining the effects of both seed words and emoticons in a unified three-layer heterogeneous graph, in which a multi-label random walk (MLRW) algorithm is performed to strengthen the emotion distribution estimation. Experimental results on real-world data reveal that our constructed emotion lexicon achieves promising results for emotion classification compared to the state-of-the-art lexicons.
Please use this identifier to cite or link to this item: