Improving Data Utility through Game Theory in Personalized Differential Privacy

Publication Type:
Conference Proceeding
IEEE International Conference on Communications, 2018, 2018-May
Issue Date:
Filename Description Size
08422735.pdfPublished version221.74 kB
Adobe PDF
Full metadata record
© 2018 IEEE. Due to dramatically increasing information published in social networks, privacy issues have given rise to public concerns. Although the presence of differential privacy provides privacy protection with theoretical foundations, the trade-off between privacy and data utility still demands further improvement. However, most existing works do not consider the impact of the adversary in the measurement of data utility. In this paper, we firstly propose a personalized differential privacy based on social distance. Then, we analyze the maximum data utility when users and adversaries are blind to the strategy sets of each other. We formulize all the payoff functions in the differential privacy sense, which is followed by the establishment of a Static Bayesian Game. The trade-off is calculated by deriving the Bayesian Nash Equilibrium. In addition, the in-place trade-off can maximize the user' data utility if the action sets of the user and the adversary are public while the strategy sets are unrevealed. Our extensive experiments on the real-world dataset prove the proposed model is effective and feasible.
Please use this identifier to cite or link to this item: