Contextualizable learning analytics design: A generic model and writing analytics evaluations

Publication Type:
Conference Proceeding
ACM International Conference Proceeding Series, 2019, pp. 210 - 219
Issue Date:
Full metadata record
© 2019 Copyright is held by the owner/author(s). Publication rights licensed to ACM. A major promise of learning analytics is that through the collection of large amounts of data we can derive insights from authentic learning environments, and impact many learners at scale. However, the context in which the learning occurs is important for educational innovations to impact student learning. In particular, for student-facing learning analytics systems like feedback tools to work effectively, they have to be integrated with pedagogical approaches and the learning design. This paper proposes a conceptual model to strike a balance between the concepts of generalizable scalable support and contextualized specific support by clarifying key elements that help to contextualize student-facing learning analytics tools. We demonstrate an implementation of the model using a writing analytics example, where the features, feedback and learning activities around the automated writing feedback tool are tuned for the pedagogical context and the assessment regime in hand, by co-designing them with the subject experts. The model can be employed for learning analytics to move from generalized support to meaningful contextualized support for enhancing learning.
Please use this identifier to cite or link to this item: