Face recognition with adaptive local hyperplane algorithm

Publisher:
Springer
Publication Type:
Journal Article
Citation:
Pattern Analysis and Applications, 2010, 13 (1), pp. 79 - 83
Issue Date:
2010-01
Full metadata record
Files in This Item:
Filename Description Size
Thumbnail2009002145OK.pdf379.58 kB
Adobe PDF
The paper introduces a novel adaptive local hyperplane (ALH) classifier and it shows its superior performance in the face recognition tasks. Four different feature extraction methods (2DPCA, (2D)2PCA, 2DLDA and (2D)2LDA) have been used in combination with five classifiers (K-nearest neighbor (KNN), support vector machine (SVM), nearest feature line (NFL), nearest neighbor line (NNL) and ALH). All the classifiers and feature extraction methods have been applied to the renown benchmarking face databasesthe Cambridge ORL database and the Yale database and the ALH classifier with a LDA based extractor outperforms all the other methods on them. The ALH algorithm on these two databases is very promising but more study on larger databases need yet to be done to show all the advantages of the proposed algorithm.
Please use this identifier to cite or link to this item: