A novel cushioned piled raft foundation to protect buildings subjected to normal fault rupture

Publication Type:
Journal Article
Computers and Geotechnics, 2019, 106 pp. 228 - 248
Issue Date:
Full metadata record
© 2018 Elsevier Ltd Recent earthquake events have shown that besides the earthquake forces, interaction between the fault rupture and structure could cause a lot of damage to the surface and underground structures. Field observations have revealed a need to design structures for fault induced loading in regions with active faults. In this present study, three-dimensional numerical modelling using ABAQUS finite element software is used to study the interactive mechanism of normal fault rupture with a 20-story moment-resisting building frame sitting on a raft, connected piled raft, and cushioned piled raft foundations. The performance of a foundation-structure system is examined by considering geotechnical and structural performance objectives such as structural inter-story drift, raft displacement, and the bending moment and shear forces within the raft and piles. In order to improve the geotechnical and structural performance of foundations and buildings, a new foundation system with cushioned piles below the raft is proposed because of its superior performance with regards to raft rocking and permanent structural inter-story drifts under normal fault rupture. This proposed foundation system also curtailed the bending moments induced in the piles.
Please use this identifier to cite or link to this item: