Reasoning about cardinal directions between extended objects

Publication Type:
Journal Article
Artificial Intelligence, 2010, 174 (12-13), pp. 951 - 983
Issue Date:
Filename Description Size
2009006629OK.pdf1.33 MB
Adobe PDF
Full metadata record
Direction relations between extended spatial objects are important commonsense knowledge. Recently, Goyal and Egenhofer proposed a relation model, known as the cardinal direction calculus (CDC), for representing direction relations between connected plane regions. The CDC is perhaps the most expressive qualitative calculus for directional information, and has attracted increasing interest from areas such as artificial intelligence, geographical information science, and image retrieval. Given a network of CDC constraints, the consistency problem is deciding if the network is realizable by connected regions in the real plane. This paper provides a cubic algorithm for checking the consistency of complete networks of basic CDC constraints, and proves that reasoning with the CDC is in general an NP-complete problem. For a consistent complete network of basic CDC constraints, our algorithm returns a 'canonical' solution in cubic time. This cubic algorithm is also adapted to check the consistency of complete networks of basic cardinal constraints between possibly disconnected regions. © 2010 Elsevier B.V. All rights reserved.
Please use this identifier to cite or link to this item: