Behavior of ultra-high performance fiber-reinforced concrete (UHPFRC) filled steel tubular members under lateral impact loading

Publication Type:
Journal Article
Citation:
International Journal of Impact Engineering, 2019, 132
Issue Date:
2019-10-01
Full metadata record
© 2019 This study investigates the behavior of ultra-high performance fiber-reinforced concrete (UHPFRC) filled steel tubular (UHPFRCFST) members under lateral impact loading. A total of five specimens were prepared and tested under lateral impact loading. All specimens were 168 mm in diameter and 2000 mm in length. In addition to UHPFRCFST members, normal strength concrete (NSC) filled steel tubular (NSCFST) members were also tested for comparison purpose. Other investigated parameters in this study include the impact energy and the presence of an inner void. The test results show that as compared to the NSCFST members, the UHPFRCFST members exhibit higher lateral impact resistance with higher peak and plateau impact forces, smaller deflection, and less local indentation. With the increase of impact energy, the peak impact force, the impact duration, and the deflection of the UHPFRCFST members are increased, while the plateau impact force is almost kept constant. Moreover, the presence of an inner void does not deteriorate the lateral impact resistance of the UHPFRCFST members. Finite element (FE) model was then developed and validated by the test results in this study. Afterwards, full-range analysis was performed to investigate the damage evolution, sectional bending moment distribution, and the interactions between the steel tube and the concrete during the impact process. Finally, detailed parametric analyses were carried out to investigate the influences of different parameters on the lateral impact behavior of UHPFRCFST members.
Please use this identifier to cite or link to this item: