Distributing sulfidized nanoscale zerovalent iron onto phosphorus-functionalized biochar for enhanced removal of antibiotic florfenicol

Publication Type:
Journal Article
Citation:
Chemical Engineering Journal, 2019, pp. 713 - 722
Issue Date:
2019-03-01
Full metadata record
© 2018 Aggregation of nZVI and sulfur-modified nZVI (S-nZVI) can lower its reactivity with contaminants in water. To overcome this limitation, we synthesized biochar-supported nZVI and S-nZVI using a phosphate pretreatment of the biochar (pBC) to uniformly distribute the nZVI and S-nZVI onto the biochar support. The participation of phosphorus groups in the synthesis, and the good distribution of S-nZVI on the pBC were confirmed by FTIR, SEM, XRD, and XPS. Pretreatment of the biochar led to smaller well-dispersed S-nZVI compared to S-nZVI supported on untreated biochar. This increased the surface area of the S-nZVI and the reaction rate with the antibiotic florfenicol (FF). The removal rate of FF by pBC-S-nZVI was 4.3 times higher than that by unsupported S-nZVI. Even though FF strongly adsorbed to the pBC support, FF was fully degraded based on the mass balance results. Surface area normalized reaction rate constants (k SA ) for FF removal by S-nZVI, BC-S-nZVI, and pBC-S-nZVI were similar, suggesting that the enhanced reactivity is due to the greater dispersion of S-nZVI on the treated biochar. These results provide a simple pretreatment method for dispersing nZVI or S-nZVI onto biochar supports.
Please use this identifier to cite or link to this item: