Few-Example Object Detection with Model Communication

Publication Type:
Journal Article
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41 (7), pp. 1641 - 1654
Issue Date:
Filename Description Size
Few-Example Object Detection with Model Communication.pdfPublished Version1.14 MB
Adobe PDF
Full metadata record
© 1979-2012 IEEE. In this paper, we study object detection using a large pool of unlabeled images and only a few labeled images per category, named few-example object detection. The key challenge consists in generating trustworthy training samples as many as possible from the pool. Using few training examples as seeds, our method iterates between model training and high-confidence sample selection. In training, easy samples are generated first and, then the poorly initialized model undergoes improvement. As the model becomes more discriminative, challenging but reliable samples are selected. After that, another round of model improvement takes place. To further improve the precision and recall of the generated training samples, we embed multiple detection models in our framework, which has proven to outperform the single model baseline and the model ensemble method. Experiments on PASCAL VOC'07, MS COCO'14, and ILSVRC'13 indicate that by using as few as three or four samples selected for each category, our method produces very competitive results when compared to the state-of-the-art weakly-supervised approaches using a large number of image-level labels.
Please use this identifier to cite or link to this item: