SnSb alloy nanoparticles embedded in N-doped porous carbon nanofibers as a high-capacity anode material for lithium-ion batteries

Publication Type:
Journal Article
Journal of Alloys and Compounds, 2019, 777 pp. 775 - 783
Issue Date:
Filename Description Size
1-s2.0-S0925838818339677-main.pdfPublished Version3.07 MB
Adobe PDF
Full metadata record
© 2018 SnSb alloy is a promising anode material for lithium-ion batteries due to its high specific capacity. However, the large volume change in the process of charge/discharge causes significant pulverizing of SnSb alloy particles, which leads to a rapid capacity fading. This paper reports the synthesis of homogenous SnSb nanoparticles that are embedded in N-doped porous carbon nanofibers through electrospinning technique with LiN3 serving as poregen agent. This distinctive structure prevents the direct contact of SnSb nanoparticles with the electrolyte and provides enough space for the volume change of SnSb alloy during the Li+ insertion/extraction process, enabling this material to deliver a high reversible capacity of 892 mA h g−1 after 100th cycle at 100 mA g−1, and a stable capacity of 487 mA h g−1 after 1000 cycles at 2000 mA g−1. These results highlight the importance of the synergistic effect of SnSb alloy nanoparticles and N-doped porous carbon nanofibers for the high performance of lithium-ion batteries.
Please use this identifier to cite or link to this item: