Review on designs and properties of multifunctional alkali-activated materials (AAMs)

Publication Type:
Journal Article
Construction and Building Materials, 2019, 200 pp. 474 - 489
Issue Date:
Full metadata record
© 2018 Elsevier Ltd The stream of research on alkali-activated materials (AAMs) has expanded rapidly during the last decades owing to the potential as a viable alternative to cement-based materials. In addition to the load-carrying function, AAMs have been integrated with other functions to develop advanced construction materials, namely multifunctional AAMs. Multifunctional AAMs are intelligent systems not only serve a basic structural function but also exhibit other functional properties or have the abilities to react upon external stimuli or disturbances. Materials of this kind have tremendous potential to enhance the mechanical performance and durability of structure, improve the reliability and longevity of infrastructure, as well as reduce life-cycle service and maintenance cost. These multifunctional properties are mainly achieved through materials composition design, incorporation of functional elements, or microstructure modification. This paper presents an overview on designs and properties of multifunctional AAMs covering the smart functions, mechanical functions, and electrical functions, and with special attention to their definition, principles, and current progress. Furthermore, the challenges in the research of multifunctional AAMs have been discussed, as well as the future directions to increase the innovation and engineering application of these materials and structures.
Please use this identifier to cite or link to this item: