GAN-DP: Generative Adversarial Net Driven Differentially Privacy-Preserving Big Data Publishing

Publication Type:
Conference Proceeding
IEEE International Conference on Communications, 2019, 2019-May
Issue Date:
Filename Description Size
GAN_DP Generative Adversarial Net Driven.pdfPublished version563.07 kB
Adobe PDF
Full metadata record
© 2019 IEEE. Increasing massive volume of data are generated every single second in this big data era. With big data from multiple sources, adversaries continuously mine private information for potential benefits. Motivated by this, we propose a generative adversarial net (GAN) driven noise generation method under the framework of differential privacy. We add one more perceptron, which is a specifically devised differential privacy identifier. After the generator produces the noise, the discriminator and the proposed identifier game with each other to derive the Nash Equilibrium. Extensive experimental results demonstrate the proposed model meets differential privacy constraints and upgrade data utility simultaneously.
Please use this identifier to cite or link to this item: