Graphitic carbon nitride with different dimensionalities for energy and environmental applications

Publication Type:
Journal Article
Citation:
Nano Research, 2020, 13 (1), pp. 18 - 37
Issue Date:
2020-01-01
Filename Description Size
Revised manuscript-nano research.pdfAccepted Manuscript5.22 MB
Adobe PDF
Full metadata record
© 2019, Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature. As a metal-free semiconductor, graphitic carbon nitride (g-C3N4) has received extensive attention due to its high stability, nontoxicity, facile and low-cost synthesis, appropriate band gap in the visible spectral range and wide availability of resources. The dimensions of g-C3N4 can influence the regime of the confinement of electrons, and consequently, g-C3N4 with various dimensionalities shows different properties, making them available for many stimulating applications. Although there are some reviews focusing on the synthesis strategy and applications of g-C3N4, there is still a lack of comprehensive review that systemically summarises the synthesis and application of different dimensions of g-C3N4, which can provide an important theoretical and practical basis for the development of g-C3N4 with different dimensionalities and maximises their potential in diverse applications. By reviewing the latest progress of g-C3N4 studies, we aim to summarise the preparation of g-C3N4 with different dimensionalities using various structural engineering strategies, discuss the fundamental bottlenecks of currently existing methods and their solution strategies, and explore their applications in energy and environmental applications. Furthermore, it also puts forward the views on the future research direction of these unique materials. [Figure not available: see fulltext.]
Please use this identifier to cite or link to this item: