Urbanization and CO<inf>2</inf> emissions in resource-exhausted cities: evidence from Xuzhou city, China

Publication Type:
Journal Article
Natural Hazards, 2019, 99 (2), pp. 807 - 826
Issue Date:
Full metadata record
© 2019, Springer Nature B.V. In this paper, we discussed the different impacts of urbanization, technical factors and resource utilization on CO2 emissions. Specifically, we investigated the urbanization process of a typical resource-based city, Xuzhou, in China to learn more about how the urbanization development of resource-exhausted cities can affect the urban economy and environment. We examined the urbanization speed and quality and then employed the STIRPAT model to analyze the actual relationship between urbanization and CO2 emissions. The results indicate that there are inverted U-shaped relationships between CO2 emissions and economic growth, the urbanization rate (UR) and urbanization quality (UQ). This proves the existence of an Environmental Kuznets Curve in the case of a resource-exhausted city. In addition, a decoupling development has gradually occurred between urbanization and CO2 emissions, and the UR has a greater influence on CO2 emissions relative to the UQ. Besides, the positive effect of industrial development on CO2 emissions gradually weakened from 2014 and may even be offset by the suppression effect of energy intensity in the future. Finally, the negative effect of the utilization rate of coal capacity indicates that optimizing energy utilization by cutting excess capacity is not only an effective way for urbanization transformation but also for improving the urban environment. These results have important implications for governmental policy decisions pertaining to the sustainable development of resource-exhausted cities.
Please use this identifier to cite or link to this item: