Mesoscale analysis on ultra-high performance steel fibre reinforced concrete slabs under contact explosions

Publication Type:
Journal Article
Citation:
Composite Structures, 2019, 228
Issue Date:
2019-11-15
Full metadata record
© 2019 Elsevier Ltd This paper develops a more efficient and applicable three-dimensional mesoscale model to simulate ultra-high performance steel fibre reinforced concrete (UHP-SFRC) slabs under contact explosions. In the proposed mesoscale model, UHP-SFRC consists of two components involving concrete matrix and steel fibres. The straight steel fibres are randomly distributed and orientated in the concrete matrix using the self-coding program. The proposed mesoscale model is firstly validated with a series of static and dynamic tests, and then it is adopted in the numerical simulation of contact explosions. With the verified mesoscale model, parametric studies are conducted to investigate the effects of slab thickness and TNT charge weight on the crater damage of UHP-SFRC slabs under contact explosions. Based on the results of parametric studies, a damage identification multi-classifier is constructed to recognize and predict the damage of UHP-SFRC slabs under contact explosions by using the support vector machine (SVM).
Please use this identifier to cite or link to this item: