Deep multi-scale discriminative networks for double JPEG compression forensics

Publication Type:
Journal Article
ACM Transactions on Intelligent Systems and Technology, 2019, 10 (2)
Issue Date:
Filename Description Size
3301274.pdfPublished Version9.87 MB
Adobe PDF
Full metadata record
© 2019 Association for Computing Machinery. As JPEG is the most widely used image format, the importance of tampering detection for JPEG images in blind forensics is self-evident. In this area, extracting effective statistical characteristics from a JPEG image for classification remains a challenge. Effective features are designed manually in traditional methods, suggesting that extensive labor-consuming research and derivation is required. In this article, we propose a novel image tampering detection method based on deep multi-scale discriminative networks (MSD-Nets). The multi-scale module is designed to automatically extract multiple features from the discrete cosine transform (DCT) coefficient histograms of the JPEG image. This module can capture the characteristic information in different scale spaces. In addition, a discriminative module is also utilized to improve the detection effect of the networks in those difficult situations when the first compression quality (QF1) is higher than the second one (QF2). A special network in this module is designed to distinguish the small statistical difference between authentic and tampered regions in these cases. Finally, a probability map can be obtained and the specific tampering area is located using the last classification results. Extensive experiments demonstrate the superiority of our proposed method in both quantitative and qualitative metrics when compared with state-of-the-art approaches.
Please use this identifier to cite or link to this item: