On Completing Sparse Knowledge Base with Transitive Relation Embedding

Publisher:
AAAI Press
Publication Type:
Conference Proceeding
Citation:
Proceedings of the ... AAAI Conference on Artificial Intelligence. AAAI Conference on Artificial Intelligence, 2019, 31 (1), pp. 3125 - 3132
Issue Date:
2019
Filename Description Size
On Completing Sparse Knowledge Base with Transitive Relation Embedding.pdfPublished version343.07 kB
Adobe PDF
Full metadata record
Multi-relation embedding is a popular approach to knowledge base completion that learns embedding representations of entities and relations to compute the plausibility of missing triplet. The effectiveness of embedding approach depends on the sparsity of KB and falls for infrequent entities that only appeared a few times. This paper addresses this issue by proposing a new model exploiting the entity-independent transitive relation patterns, namely Transitive Relation Embedding (TRE). The TRE model alleviates the sparsity problem for predicting on infrequent entities while enjoys the generalisation power of embedding. Experiments on three public datasets against seven baselines showed the merits of TRE in terms of knowledge base completion accuracy as well as computational complexity.
Please use this identifier to cite or link to this item: