Field and spaceborne imagery data for evaluation of the paleo-stress regime during formation of the Jurassic dike swarms in the Kalateh Alaeddin Mountain area, Shahrood, north Iran

Publication Type:
Journal Article
Arabian Journal of Geosciences, 2019, 12 (17)
Issue Date:
Filename Description Size
Azar2019_Article_FieldAndSpaceborneImageryDataF.pdfPublished Version8.14 MB
Adobe PDF
Full metadata record
© 2019, Saudi Society for Geosciences. Dike swarms are commonly linked with extensional structures in diverse geodynamic environments. Mafic dyke swarms are typically used to reconstruct the paleo-stress fields of a given region. These dikes are considered paleo-stress indicators and excellent time marker (if related geochronological data are available) of the local and regional stress fields. In the Middle-Late Jurassic, swarms of mafic dikes emplaced into the Neoproterozoic schists and amphibolites in the Kalateh Alaeddin Mountain area in south Shahrood, north Iran. These dikes with different thicknesses show a general east–west strike direction, with mostly a steep dip angle. In this paper, we present structural data of these dike swarms for the sake of assessing the paleo-stress state and the magma pressure ratio at the time of their emplacement. Field and structural data are integrated with ASTER Global Digital Elevation Model (GDEM) and Centre National d’Etudes Spatiales (CNES)/SPOT imagery data, to extract important parameters of the investigated dikes and controlling fault/joint sets. Orientation of the principal paleo-stress axes, quantification of the stress ratio, and the associated magma pressure ratio (driving stress ratio) were calculated using the stereographic projection and Mohr’s circle reconstruction techniques. The results reveal that the maximum paleo-stress component (σ1) was sub-vertical and the intermediate (σ2) and minimum (σ3) paleo-stresses components were sub-horizontal in N264° E and N173° E trends, respectively. Due to the low value of the driving stress ratio (R = 0.05), these dikes developed perpendicular to the minimum principal stress (in E–W direction). The stress ratio value (ø = 0.66) indicates a moderately oblate stress ellipsoid. The orientation of the principal paleo-stress axes and the oblate ellipsoid are indicative of the dike emplacement during a N–S-directed tectonic extension, in agreement with the Jurassic subsidence phase and N–S stretching described for the Kalateh Alaeddin Mountain area.
Please use this identifier to cite or link to this item: