DICE: Deep intelligent contextual embedding for twitter sentiment analysis

Publication Type:
Conference Proceeding
Citation:
Proceedings of the International Conference on Document Analysis and Recognition, ICDAR, 2019, pp. 953 - 958
Issue Date:
2019-09-01
Filename Description Size
2-s2.0-85076544353 Combined pdf.pdfAccepted Manuscript Version595.61 kB
Adobe PDF
Full metadata record
© 2019 IEEE. The sentiment analysis of the social media-based short text (e.g., Twitter messages) is very valuable for many good reasons, explored increasingly in different communities such as text analysis, social media analysis, and recommendation. However, it is challenging as tweet-like social media text is often short, informal and noisy, and involves language ambiguity such as polysemy. The existing sentiment analysis approaches are mainly for document and clean textual data. Accordingly, we propose a Deep Intelligent Contextual Embedding (DICE), which enhances the tweet quality by handling noises within contexts, and then integrates four embeddings to involve polysemy in context, semantics, syntax, and sentiment knowledge of words in a tweet. DICE is then fed to a Bi-directional Long Short Term Memory (BiLSTM) network with attention to determine the sentiment of a tweet. The experimental results show that our model outperforms several baselines of both classic classifiers and combinations of various word embedding models in the sentiment analysis of airline-related tweets.
Please use this identifier to cite or link to this item: