ResInNet: A Novel Deep Neural Network with Feature Reuse for Internet of Things

Publisher:
Institute of Electrical and Electronics Engineers
Publication Type:
Journal Article
Citation:
IEEE Internet of Things Journal, 2019, 6, (1), pp. 679-691
Issue Date:
2019-02-01
Filename Description Size
08405574.pdfPublished version2.25 MB
Adobe PDF
Full metadata record
© 2014 IEEE. Deep neural networks (DNNs) have widely used in various Internet-of-Things (IoT) applications. Pursuing superior performance is always a hot spot in the field of DNN modeling. Recently, feature reuse provides an effective means of achieving favorable nonlinear approximation performance in deep learning. Existing implementations utilizes a multilayer perception (MLP) to act as a functional unit for feature reuse. However, determining connection weight and bias of MLP is a rather intractable problem, since the conventional back-propagation learning approach encounters the limitations of slow convergence and local optimum. To address this issue, this paper develops a novel DNN considering a well-behaved alternative called reservoir computing, i.e., reservoir in network (ResInNet). In this structure, the built-in reservoir has two notable functions. First, it behaves as a bridge between any two restricted Boltzmann machines in the feature learning part of ResInNet, performing a feature abstraction once again. Such reservoir-based feature translation provides excellent starting points for the following nonlinear regression. Second, it serves as a nonlinear approximation, trained by a simple linear regression using the most representative (learned) features. Experimental results over various benchmark datasets show that ResInNet can achieve the superior nonlinear approximation performance in comparison to the baseline models, and produce the excellent dynamic characteristics and memory capacity. Meanwhile, the merits of our approach is further demonstrated in the network traffic prediction related to real-world IoT application.
Please use this identifier to cite or link to this item: