Experimental Investigation on the Compaction and Compressible Properties of Expansive Soil Reinforced with Bagasse Fibre and Lime

Publisher:
Springer
Publication Type:
Conference Proceeding
Citation:
Recent Advancements on Expansive Soils: Proceedings of the 2nd GeoMEast International Congress and Exhibition on Sustainable Civil Infrastructures, Egypt 2018 – The Official International Congress of the Soil-Structure Interaction Group in Egypt (SSIGE), 2019, pp. 64-78
Issue Date:
2019
Full metadata record
This paper presents a laboratory investigation into the mechanical characteristics of expansive soil reinforced with randomly distributed bagasse fibre and lime combination. Bagasse fibre, an agricultural waste by-product left after crushing of sugar-cane for juice extraction, was employed in this investigation as a reinforcing component for expansive soil reinforcement. Several series of laboratory experiments including standard compaction and consolidation tests were carried out on untreated soil and soil samples mixed with various contents of bagasse fibre in a wide range from 0% to 2% and a certain amount of 2.5% lime. The experimental results were used to comprehend the effects of adding bagasse fibre on the compaction and compressible properties of fibre reinforced soils with lime stabilisation. The compaction test results indicate that the addition of bagasse fibre, hydrated lime, and their combination decreased the dry density of stabilised soils. Moreover, the obtained results of the consolidation tests reveal that the reinforcement of expansive soil with bagasse fibre improved the pre-consolidation pressure, meanwhile tended to reduce the compression characteristics of the lime stabilised soils as bagasse fibre content increased from 0% to 1%. However, an excessive increase in bagasse fibre content beyond 1% to 2% was found to result in a slight reduction of the compressibility of lime-soil mixtures reinforced with bagasse fibre. The findings of this research provide a deeper insight into promoting applications of an agricultural waste by-product of bagasse fibre as a low-cost and eco-friendly material for treatment of expansive soils and fill materials for sustainable construction development in the field of civil infrastructure foundations.
Please use this identifier to cite or link to this item: