Joint Relational Dependency Learning for Sequential Recommendation

Springer International Publishing
Publication Type:
Conference Proceeding
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2020, 12084 LNAI, pp. 168-180
Issue Date:
Filename Description Size
paper344-main.pdfAccepted version430.5 kB
Adobe PDF
Full metadata record
© Springer Nature Switzerland AG 2020. Sequential recommendation leverages the temporal information of users’ transactions as transition dependencies for better inferring user preference, which has become increasingly popular in academic research and practical applications. Short-term transition dependencies contain the information of partial item orders, while long-term transition dependencies infer long-range user preference, the two dependencies are mutually restrictive and complementary. Although some work investigates unifying both long-term and short-term dependencies for better performance, they still neglect the fact that short-term interactions are multi-folds, which are either individual-level interactions or union-level interactions. Existing sequential recommendations mainly focus on user’s individual (i.e., individual-level) interactions but ignore the important collective influence at union-level. Since union-level interactions can reflect that human decisions are made based on multiple items he/she has already interacted, ignoring such interactions can result in the disability of capturing the collective influence between items. To alleviate this issue, we proposed a Joint Relational Dependency learning (JRD-L) for sequential recommendation that exploits both long-term and short-term preferences at individual-level and union-level. Specifically, JRD-L combines long-term user preferences with short-term interests by measuring short-term pair relations at individual-level and union-level. Moreover, JRD-L can alleviate the sparsity problem of union-level interactions by adding more descriptive details to each item, which is carried by individual-level relations. Extensive numerical experiments demonstrate JRD-L outperforms state-of-the-art baselines for the sequential recommendation.
Please use this identifier to cite or link to this item: