Fabrication and characterization of Ni-Ce-Zr ternary disk-shaped catalyst and its application for low-temperature CO2 methanation

Publisher:
ELSEVIER SCI LTD
Publication Type:
Journal Article
Citation:
Fuel, 2020, 260
Issue Date:
2020-01-15
Full metadata record
© 2019 Elsevier Ltd This study optimized a Ni-Ce-Zr catalyst and its contents for a CO2 methanation reaction by selecting a disk shape with a high mechanical strength, good durability, and thermal emission resistance. The physical and chemical properties of the obtained catalysts were determined by X-ray diffraction, scanning electron microscopy, Brunauer–Emmett–Teller, hydrogen temperature-programmed reduction, and temperature-programmed desorption of CO2 analyses. In addition, the activity and stability of the obtained catalysts were then evaluated and compared. It was determined that the combined Ni-Ce-Zr catalyst positively affects the conversion of CO2 to CH4. Furthermore, a CO2 methanation experiment was performed under atmospheric pressure conditions at 200–350 °C. The CO2 conversion was 82% at 300 °C, and the CH4 selectivity was 100%. A durability test revealed a difference in the conversion of approximately 6% for 1000 h, which indicates that the catalytic performance was maintained for a significant period.
Please use this identifier to cite or link to this item: