Advanced treatment technologies efficacies and mechanism of per- and poly-fluoroalkyl substances removal from water

Publication Type:
Journal Article
Process Safety and Environmental Protection, 2020, 136, pp. 1-14
Issue Date:
Filename Description Size
OCC-169826_AM.pdfAccepted Manuscript version487.18 kB
Adobe PDF
Full metadata record
© 2020 Institution of Chemical Engineers The increasing occurrence of chemically resistant per- and poly-fluoroalkyl substances (PFASs) in the natural environment, animal tissues and even the human body poses a significant health risk. Temporal trend studies on water, sediments, bird, fish, marine mammal and the human show that the exposure of PFAS has significantly increased over the last 20–30 years. Different physical, biological and chemical treatment processes have been investigated for PFAS removal from water. However, there is a lack of detailed understating of the mechanism of removal by different methods, especially by different advanced chemical treatment processes. This article reviews PFASs removal efficacy and mechanism by the advanced chemical treatment methods from aqueous solution. Review shows that several advanced oxidation processes (e.g., electrochemical oxidation, activated persulfate oxidation, photocatalysis, UV-induced oxidation) are successful in degrading PFASs. Moreover, defluorination treatment, some thermal and non-thermal degradation processes are also found to be prominent for the degradation of PFASs with some limitations including process costs over physical treatment (e.g., sorption), production of toxic by-products and greenhouse gases. Finally, knowledge gaps concerning the advanced chemical treatment of PFASs are discussed.
Please use this identifier to cite or link to this item: