Cross-Cloud MapReduce for Big Data

Institute of Electrical and Electronics Engineers (IEEE)
Publication Type:
Journal Article
IEEE Transactions on Cloud Computing, 2020, 8, (2), pp. 375-386
Issue Date:
Filename Description Size
07229313.pdfPublished version1.24 MB
Adobe PDF
Full metadata record
© 2013 IEEE. MapReduce plays a critical role as a leading framework for big data analytics. In this paper, we consider a geo-distributed cloud architecture that provides MapReduce services based on the big data collected from end users all over the world. Existing work handles MapReduce jobs by a traditional computation-centric approach that all input data distributed in multiple clouds are aggregated to a virtual cluster that resides in a single cloud. Its poor efficiency and high cost for big data support motivate us to propose a novel data-centric architecture with three key techniques, namely, cross-cloud virtual cluster, data-centric job placement, and network coding based traffic routing. Our design leads to an optimization framework with the objective of minimizing both computation and transmission cost for running a set of MapReduce jobs in geo-distributed clouds. We further design a parallel algorithm by decomposing the original large-scale problem into several distributively solvable subproblems that are coordinated by a high-level master problem. Finally, we conduct real-world experiments and extensive simulations to show that our proposal significantly outperforms the existing works.
Please use this identifier to cite or link to this item: